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Polymeric membranes are widely used in gas separations,
liquid separations, and other processes such as fuel cells.
However, methods and processes for manufacturing these
membranes are usually harmful to the environment and/or
human health. Although many new materials and synthesis
methods are reported every year, green synthesis only makes
up a small proportion. Therefore, more efforts are necessary to
raise researchers’ awareness to green synthesis of mem-
branes. One popular strategy to greenly synthesize mem-
branes is to avoid toxic organic solvents or use water to
replace organic solvents completely. However, many reported
green methods could only realize green synthesis partly. The
ultimate goal is to synthesize membranes in a completely eco-
friendly way, where raw materials, membrane preparation,
post-treatment, and other involved procedures are all ‘green’.
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Introduction
As its name implies, polymeric membranes are made
using polymers as the matrix. The vast variety of poly-
mers and synthesis methods contribute to an abundance

of polymeric membranes with different properties and
applications. Polymeric membranes are widely used in
gas separation, liquid separation (e.g., water purifica-
tion), energy production, and so on [1e4]. Pressure-
driven membranes are an important branch of poly-
meric membranes, and they are usually classified
into microfiltration, ultrafiltration, nanofiltration, and
www.sciencedirect.com
reverse osmosis based on pore size [5,6]. Ion exchange
membranes (IEMs) are electrically driven membranes
and have been widely used in a lot of applications [7,8].

Other membrane processes include, but are not limited
to, forward osmosis, pervaporation, and membrane
distillation [9e11]. Common polymers used for mem-
brane preparation include polystyrene [12], poly-
propylene [13], polyethersulfone [14], polyvinylidene
fluoride (PVDF) [15], polybenzimidazole (PBI) [16],
polyvinyl alcohol (PVA) [17], polytetrafluoroethylene
[18], polyethylene [19], polyamide [20], and polyimide
[21]. Recently, many new types of polymers are
emerging which show promising future for membrane
synthesis and applications. An example is polymers with

intrinsic microporosity (PIMs), which are ideal candi-
dates for gas separation membranes [22e24].

Green synthesis is becoming more and more important
in membrane synthesis. Generally, green synthesis can
be partly achieved by replacing conventional toxic
organic solvents with water or nontoxic organic sol-
vents. A completely green synthesis should avoid using
any chemicals, reactions, and processes that are
dangerous to humans and/or the environment. Mean-
while, the raw materials used for synthesis should also

be fabricated greenly. In other words, life cycle
assessment technique should be used when designing
green synthesis routes.

Nevertheless, although there are various synthesis
methods for polymeric membranes, only a small portion
of these methods can be classified as green synthesis
methods. Usually, organic solvents are inevitable in
membrane synthesis. Common organic solvents used
for synthesis include acetone [25], methanol [26],
dimethylformamide (DMF) [27], dimethylacetamide

(DMAc) [28], toluene [29], N-methyl-2-pyrrolidone
[30], dimethyl sulfoxide (DMSO) [31], and tetrahy-
drofuran [32]. Among these solvents, many are toxic
to human health and hazardous to the environment.
Besides, many membrane synthesis processes involve
dangerous reactants or produce a lot of hazardous
waste.

Although many reviews on synthesizing different types
of polymeric membranes are available, there are few
reviews on green synthesis of polymeric membranes.
This article briefly discusses recent advances and limi-

tations of green synthesis of polymeric membranes and
provides future directions for green synthesis.
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Green synthesis of polymeric membranes:
recent advances and limitations
Generally, polymeric membranes are synthesized via two
routes, where one involves chemical reactions, while
the other one does not involve chemical reactions. The
chemical-reaction route usually involves polymerization
and/or functionalization. For the nonchemical-reaction
route, polymers are usually dissolved in organic solvents,
followed by solution casting and phase inversion/solvent
evaporation process.
Figure 1

Conventional routes and green routes for synthesizing IEMs. (a) Conventional r
(c) Conventional route for synthesizing CEMs. (d) An example of green synth
propanesulfonic acid; TEOS, tetraethyl orthosilicate; IEM, ion exchange mem
membrane; VBTAC, (ar-vinylbenzyl)trimethylammonium chloride; PVA, polyvin
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Green synthesis of IEMs
Typically, there are two successive steps for synthesizing
anion exchange membranes (AEMs), including chlor-
omethylation followed by quaternization to introduce
quaternary ammonium groups (Figure 1a) [33,34].
However, toxic and/or carcinogenic chemicals are usually
unavoidable in this method [35,36]. For example,
chloromethyl methyl ether (CMME) is often used for
chloromethylation [25,33,37]. According to the Inter-
national Agency for Research on Cancer (IARC),
oute for synthesizing AEMs. (b) An example of green synthesis of AEMs.
esis of CEMs. TMA, trimethylamine; THOPS, 3-trihydroxysilyl-1-
brane; AEM, anion exchange membrane; CEM, cation exchange
yl alcohol; CMME, chloromethyl methyl ether.
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CMME is carcinogenic to human beings. Also, organic
solvents are often used in this method [38]. In some
studies, CMME is replaced by other chemicals (e.g.,
paraformaldehyde and chlorotrimethylsilane [39]).
However, even if these chemicals are not as dangerous as
CMME, they are only relatively safer than CMME.
Therefore, researchers have developed various methods
to skip the chloromethylation process and to directly

quaternize polymers that contain nitrogen groups. For
example, Hou et al. [40] reported a green route to
prepare AEMs by quaternizing PBI using bromoethane.
This route is very simple, and no dangerous chlor-
omethylation reagents are used. From this aspect, it
could be classified as green synthesis. However, on the
other hand, a lot of DMAc is used to dissolve PBI. Ac-
cording to the IARC, DMAc is possibly carcinogenic to
humans. Qaisrani et al. [41] synthesized a new kind of
AEMs through thermal treatment of benzoxazine
monomer on polytetrafluoroethylene support. Similarly,

no chloromethylation is needed in this route. However,
formaldehyde is used for benzoxazine synthesis. Ac-
cording to the IARC, formaldehyde is a human carcin-
ogen. Besides, as a solvent, 1,4-dioxane is used for both
benzoxazine synthesis and the after membrane prepa-
ration. According to the IARC, 1,4-dioxane is a probable
human carcinogen. Also, other hazardous chemicals,
although not classified as carcinogenic because of lack of
evidence, are used in the aforementioned routes.
Therefore, strictly speaking, the routes developed by
Hou et al. and Qaisrani et al. only realize green synthesis

partly compared with traditional methods. Examples of
other studies which can also be classified as ‘partly
green’ are the synthesis of materials for 4-nitrophenol
removal, where DMF and 1,2-dichloroethane are used
as the solvents [42], and the synthesis of radiation-
grafted AEMs, where conventional organic chemical
propan-2-ol is replaced by water [43]. According to the
IARC, 1,2-dichloroethane is possibly carcinogenic to
humans. Hu et al. [44] developed a more environment
friendly route to prepare AEMs via plasma grafting,
polymerization of (ar-vinylbenzyl)trimethylammonium
chloride which contains functional quaternary ammo-

nium groups, and solution casting technique. Neither
chloromethylation nor quaternization is needed for this
route, which is its main advantage over other synthesis
routes. The main drawback is that organic solvent DMF
is still needed due to the use of solution casting. How-
ever, this study opens up new doors for preparing AEMs
in a ‘greener’ way, which is to directly use monomers
containing functional groups (Figure 1b). It should be
pointed out that when using this methodology, other
strategies (e.g., plasma grafting, cross-linking reagents)
have to be applied at the same time to make the poly-

mers (in salt form) insoluble in water and more resistant
to membrane swelling.

The synthesis of cation exchange membranes (CEMs)
generally involves sulfonation to introduce functional
www.sciencedirect.com
sulfonic groups (Figure 1c) [45]. Dangerous acids such
as concentrated sulfuric acid or chlorosulfonic acid are
typically used in sulfonation. The acid waste is also
hazardous to the environment, and additional efforts are
needed to handle the waste properly. Another common
method to synthesize CEMs is to disperse cation ex-
change resins into polymer solution, followed by solu-
tion casting and solvent removal (e.g., phase inversion,

solvent evaporation by heating) to get the membrane
[46]. However, organic solvents are inevitable in this
route. To solve these problems, Hao et al. [47] devel-
oped a green route to synthesize PVA-based CEMs
(Figure 1d). Because PVA is soluble in water, all the
preparation is carried out in aqueous media. Therefore,
no organic solvent is used. Also, no sulfonation is
needed.

Green synthesis of other polymeric membranes
In fact, not limited to IEMs, many polymeric mem-
branes are ‘greenly’ synthesized in aqueous media [48].
For example, Baatout et al. [49] synthesized cyclodex-
trin membranes as humidity sensors in aqueous media.
Li et al. [50] prepared different kinds of poly-
dimethylsiloxaneePVDF composite membranes via
traditional route using toxic n-hexane and green route
using water coupled with surfactant. The authors found
that membranes prepared using green route demon-
strated better pervaporation performance than mem-

branes prepared using conventional routes. Using water
as the solvent, Peng et al. [51] developed a green
method to synthesize b-MnOOH nanofibers. Unfortu-
nately, toxic organic solvent, that is, toluene, is also used
during membrane preparation. Bibi et al. [52] prepared
green nanocomposite membranes using water as the
major medium (Figure 2). Using this green method,
they carried out a series of studies [53e55]. There are
several green strategies involved in their synthesis that
are worth discussing. First and foremost, most of the
chemicals used for synthesis are water soluble, including

polymers. Therefore, no toxic organic solvents are
needed because water can be used as the substitute.
Second, polymers are used for membrane preparation.
Therefore, no polymerization is needed. In other words,
no dangerous monomers are needed. Third, if a chemical
has to be used but cannot be dissolved in water, then
other green strategies can be applied. For example,
sonication can be used to disperse carbon nanotubes
into aqueous solution. Finally, if an organic solvent has to
be used, then low toxic ones are chosen, such as ethanol.
More details derived from the last strategy are discussed

in the following section.

Unfortunately, in many situations, water cannot take the
role of conventional toxic organic solvents. In these
cases, nontoxic or less toxic solvents can be used. Ex-
amples of green or less toxic organic solvents are methyl
lactate, ethyl lactate, supercritical carbon dioxide
(sCO2), ionic liquids, DMSO, and triethylphosphate
Current Opinion in Green and Sustainable Chemistry 2020, 21:1–8
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Figure 2

An example of green synthesis of nanocomposite membranes. PVP, polyvinylpyrrolidone; TEVS, triethoxyvinylsilane; TEOS, tetraethyl orthosilicate;
KPS, potassium persulfate; CNT, carbon nanotube; PVA, polyvinyl alcohol.
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[56]. For example, PIMs are commonly synthesized
using toxic organic solvents, such as DMAc and toluene
[57e59]. Ponomarev et al. [60] developed a new
method to effectively synthesize PIMs using DMSO as
the solvent. Marino et al. [61] synthesized PVDF
membranes for membrane distillation applications using
solution casting method, where triethylphosphate is
used as the solvent to replace conventional toxic sol-
vents. Barroso et al. [62] synthesized polyacrylonitrile-

based ultrafiltration membranes in sCO2 with improved
antifouling performance.

To meet the requirements for different applications of
polymeric membranes, there is a growing interest to
incorporate nanoparticles (NPs) into the polymer matrix
to tune membrane properties [63]. Because NPs are
part of the membranes, the synthesis of NPs is expected
to be green as well. There have been quite a few studies
on green synthesis of NPs; many of which are conducted
in aqueous media [64,65]. Sharma et al. [66] conducted

a comprehensive review on green synthesis of silver
NPs. Smuleac et al. [67] developed a novel green route
to prepare membranes for the degradation of chlorinated
organic pollutants (Figure 3). Specifically, PVDF mem-
branes were functionalized by in situ polymerization of
acrylic acid in an aqueous phase. Then Fe NPs were
synthesized in polyacrylic acid functionalized PVDF
membranes using green tea extract, instead of the
conventional dangerous reducing agent, that is, sodium
borohydride. This green route is exemplary because no
organic solvents are used during membrane preparation.

Instead, water is used as the solvent. Furthermore, as a
substitute for traditional reducing agents, green tea
extract is innovatively used for NPs synthesis. Green tea
extract is biodegradable, naturally available, and
nontoxic. This enlightening study opens up new possi-
bilities for green synthesis, which is to explore green
materials from the natural world to replace conventional
chemicals.
Current Opinion in Green and Sustainable Chemistry 2020, 21:1–8
As indicated previously, researchers have been
exploiting natural resources, such as carboxymethyl
cellulose (CMC) and natural tree gums, as the sub-
stitutes for conventional chemicals. As a biodegradable
polymer, CMC is derived from nature resources [68].
Unlu et al. [68] synthesized a catalytic membrane for
biodiesel production. They used CMC as the polymer.
Moreover, the preparation is carried out in aqueous
solution at room temperature because CMC is also

soluble in water. But unfortunately, chloroacetic acid is
usually used in CMC production, and it is considered
as a hazardous chemical. Gum karaya and gum konda-
gogu are two examples of natural tree gums. As the
green reducing agents, they are used for synthesis of
NPs [69e71].
Conclusions and future prospects
With the continuous improvement of our society, in
combination with the growing concern of global envi-
ronmental pollution, green and sustainable synthesis is
the only way forward. Unfortunately, for polymeric
membrane preparation, green synthesis studies only
account for a small portion of the total studies. More-
over, most of the current green strategies can only
realize green synthesis partly. Therefore, there is still a

long way to go. Before reaching the ultimate goal of
green synthesis, there are several stages to go (Figure 4).

Increase the proportion of green synthesis to total
synthesis (stage 1)
In this stage, more researchers are considering green
synthesis strategies when designing their experiments.
One typical route is toxic solvents are gradually replaced
by less toxic or nontoxic solvents which are commercially
available. Another typical route is chemicals which ‘only’
dissolves in toxic solvents are gradually replaced by more
environment friendly chemicals. The two routes are not
mutually exclusive. If fact, they can be proceeded
simultaneously. An example is to use existing water-
www.sciencedirect.com

www.sciencedirect.com/science/journal/24522236


Figure 3

An example of green synthesis of membranes using natural available resources. AA, acrylic acid; PVDF, polyvinylidene fluoride.
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soluble polymers to replace water-insoluble polymers;
therefore, water can be used to dissolve the polymers.

Increase the proportion of ‘near-complete green
synthesis’ to total green synthesis (stage 2)
In this stage, more synthesis methods are developed to
realize ‘near-complete green synthesis’, which means
that no toxic solvents are used, no toxic reactants are
used, and no dangerous or unsustainable processes/
Figure 4

Four stages of green synthesis of polymeric membranes.

www.sciencedirect.com
procedures are used. For example, in these green routes,
there is no need to use a lot of solvents to wash the
membranes to remove unreacted chemicals, and there is

no hazardous waste produced during synthesis.

Apply the ‘life cycle assessment methodology’ to
realize green synthesis completely (stage 3)
In this stage, when designing a synthesis route, the
origin of the chemicals used for synthesis, as well as
Current Opinion in Green and Sustainable Chemistry 2020, 21:1–8
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other materials involved in the synthesis procedure,
should also be considered as green. In other words, not
only should a chemical itself be safe/nontoxic, but the
sources and procedures used to produce this chemical
should be green as well. One route is to use natural re-
sources to extract chemicals that are harmless to humans
and the environment. It should be addressed that the
extraction process should be green as well.

Continuously develop more green chemicals and
synthesis methods (stage 4)
In this stage, it is very hard to find membranes syn-
thesized via environment unfriendly ways because there
are plenty of green methods available, there are a vast
variety of green chemicals which are commercially
available, and more chemicals are being developed or
discovered in green and sustainable ways. At this stage,
the ultimate goal of green synthesis is fully achieved.
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